International System of unit (SI) : Viscosity (Dynamic)=Pascal Second
Pascal Second | Newton Second per Square Meter | Kilogram per Meter Second | Centipoise | Poise | Stokes | Millipascal Second | Fluid Ounce per Square Foot | Pascal Second per Square Meter | Cubic Meter per Second per Pascal | Microfluid | Liter per Second per Meter | Pound per Foot Second | Gallon per Second | Newton-Second per Square Meter | Kilogram per Meter Second | Centipoise per Second | Poise per Second | Millipascal Second | Fluid Ounce per Square Inch | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pascal Second | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Newton Second per Square Meter | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Kilogram per Meter Second | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Centipoise | 1,000 | 1,000 | 1,000 | 1 | 100 | 0.1 | 1 | 9,290.3 | 1,000 | 1,000 | 0.001 | 1,000 | 1,488.163 | 3,785.41 | 1,000 | 1,000 | 1 | 100 | 1 | 62.43 |
Poise | 10 | 10 | 10 | 0.01 | 1 | 0.001 | 0.01 | 92.903 | 10 | 10 | 1.0000e-5 | 10 | 14.882 | 37.854 | 10 | 10 | 0.01 | 1 | 0.01 | 0.624 |
Stokes | 1.0000e+4 | 1.0000e+4 | 1.0000e+4 | 10 | 1,000 | 1 | 10 | 9.2903e+4 | 1.0000e+4 | 1.0000e+4 | 0.01 | 1.0000e+4 | 1.4882e+4 | 3.7854e+4 | 1.0000e+4 | 1.0000e+4 | 10 | 1,000 | 10 | 624.3 |
Millipascal Second | 1,000 | 1,000 | 1,000 | 1 | 100 | 0.1 | 1 | 9,290.3 | 1,000 | 1,000 | 0.001 | 1,000 | 1,488.163 | 3,785.41 | 1,000 | 1,000 | 1 | 100 | 1 | 62.43 |
Fluid Ounce per Square Foot | 0.108 | 0.108 | 0.108 | 0 | 0.011 | 1.0764e-5 | 0 | 1 | 0.108 | 0.108 | 1.0764e-7 | 0.108 | 0.16 | 0.407 | 0.108 | 0.108 | 0 | 0.011 | 0 | 0.007 |
Pascal Second per Square Meter | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Cubic Meter per Second per Pascal | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Microfluid | 1.0000e+6 | 1.0000e+6 | 1.0000e+6 | 1,000 | 1.0000e+5 | 100 | 1,000 | 9.2903e+6 | 1.0000e+6 | 1.0000e+6 | 1 | 1.0000e+6 | 1.4882e+6 | 3.7854e+6 | 1.0000e+6 | 1.0000e+6 | 1,000 | 1.0000e+5 | 1,000 | 6.2430e+4 |
Liter per Second per Meter | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Pound per Foot Second | 0.672 | 0.672 | 0.672 | 0.001 | 0.067 | 6.7197e-5 | 0.001 | 6.243 | 0.672 | 0.672 | 6.7197e-7 | 0.672 | 1 | 2.544 | 0.672 | 0.672 | 0.001 | 0.067 | 0.001 | 0.042 |
Gallon per Second | 0.264 | 0.264 | 0.264 | 0 | 0.026 | 2.6417e-5 | 0 | 2.454 | 0.264 | 0.264 | 2.6417e-7 | 0.264 | 0.393 | 1 | 0.264 | 0.264 | 0 | 0.026 | 0 | 0.016 |
Newton-Second per Square Meter | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Kilogram per Meter Second | 1 | 1 | 1 | 0.001 | 0.1 | 0 | 0.001 | 9.29 | 1 | 1 | 1.0000e-6 | 1 | 1.488 | 3.785 | 1 | 1 | 0.001 | 0.1 | 0.001 | 0.062 |
Centipoise per Second | 1,000 | 1,000 | 1,000 | 1 | 100 | 0.1 | 1 | 9,290.3 | 1,000 | 1,000 | 0.001 | 1,000 | 1,488.163 | 3,785.41 | 1,000 | 1,000 | 1 | 100 | 1 | 62.43 |
Poise per Second | 10 | 10 | 10 | 0.01 | 1 | 0.001 | 0.01 | 92.903 | 10 | 10 | 1.0000e-5 | 10 | 14.882 | 37.854 | 10 | 10 | 0.01 | 1 | 0.01 | 0.624 |
Millipascal Second | 1,000 | 1,000 | 1,000 | 1 | 100 | 0.1 | 1 | 9,290.3 | 1,000 | 1,000 | 0.001 | 1,000 | 1,488.163 | 3,785.41 | 1,000 | 1,000 | 1 | 100 | 1 | 62.43 |
Fluid Ounce per Square Inch | 16.018 | 16.018 | 16.018 | 0.016 | 1.602 | 0.002 | 0.016 | 148.811 | 16.018 | 16.018 | 1.6018e-5 | 16.018 | 23.837 | 60.634 | 16.018 | 16.018 | 0.016 | 1.602 | 0.016 | 1 |
Viscosity is a fundamental property of fluids that describes their resistance to flow. The dynamic viscosity, measured in pascal-seconds (Pa·s), is crucial in various scientific and engineering applications, including fluid dynamics, chemical engineering, and material science. Our Viscosity (Dynamic) tool allows you to convert between various viscosity units, making it easier to work with fluids in different contexts.
Dynamic viscosity quantifies a fluid's internal resistance to flow. It is defined as the ratio of shear stress to shear rate. In simpler terms, it tells us how "thick" or "thin" a fluid is. For example, honey has a higher viscosity than water, meaning it flows more slowly.
The standard unit of dynamic viscosity is the pascal-second (Pa·s). Other common units include newton-seconds per square meter (N·s/m²), kilogram per meter-second (kg/m·s), and centipoise (cP). Understanding these units is essential for accurate calculations in various applications.
The concept of viscosity dates back to the 17th century, with significant contributions from scientists like Sir Isaac Newton, who formulated the relationship between shear stress and shear rate. Over the years, the study of viscosity has evolved, leading to the development of various measurement techniques and standards that are widely used today.
To illustrate how dynamic viscosity works, consider a fluid with a shear stress of 5 pascals and a shear rate of 2 s⁻¹. The dynamic viscosity can be calculated using the formula:
[ \text{Dynamic Viscosity} (\mu) = \frac{\text{Shear Stress} (\tau)}{\text{Shear Rate} (\dot{\gamma})} ]
In this case:
[ \mu = \frac{5 , \text{Pa}}{2 , \text{s}^{-1}} = 2.5 , \text{Pa·s} ]
Different industries utilize various viscosity units depending on their specific needs. For instance, food and beverage industries often use centipoise, while chemical engineering may prefer pascal-seconds. Understanding the context in which these units are used is vital for accurate communication and calculations.
To use our Viscosity (Dynamic) tool, follow these simple steps:
What is dynamic viscosity?
How do I convert viscosity units?
What are the common units of dynamic viscosity?
Why is viscosity important in engineering?
Can I use this tool for non-Newtonian fluids?
What is the relationship between viscosity and temperature?
How does viscosity affect the performance of lubricants?
What is the difference between dynamic and kinematic viscosity?
How can I measure the viscosity of a fluid?
Where can I find more information on viscosity?
By utilizing our Viscosity (Dynamic) tool, you can easily convert between different viscosity units, enhancing your understanding and application of this essential fluid property. Whether you're a student, engineer, or researcher, our tool is designed to meet your viscosity conversion needs efficiently.