1 eV/e = 1.6022e-19 V
1 V = 6,241,495,961,752,113,000 eV/e
Example:
Convert 15 Electronvolt per Elementary Charge to Volt:
15 eV/e = 2.4033e-18 V
Electronvolt per Elementary Charge | Volt |
---|---|
0.01 eV/e | 1.6022e-21 V |
0.1 eV/e | 1.6022e-20 V |
1 eV/e | 1.6022e-19 V |
2 eV/e | 3.2044e-19 V |
3 eV/e | 4.8065e-19 V |
5 eV/e | 8.0109e-19 V |
10 eV/e | 1.6022e-18 V |
20 eV/e | 3.2044e-18 V |
30 eV/e | 4.8065e-18 V |
40 eV/e | 6.4087e-18 V |
50 eV/e | 8.0109e-18 V |
60 eV/e | 9.6131e-18 V |
70 eV/e | 1.1215e-17 V |
80 eV/e | 1.2817e-17 V |
90 eV/e | 1.4420e-17 V |
100 eV/e | 1.6022e-17 V |
250 eV/e | 4.0055e-17 V |
500 eV/e | 8.0109e-17 V |
750 eV/e | 1.2016e-16 V |
1000 eV/e | 1.6022e-16 V |
10000 eV/e | 1.6022e-15 V |
100000 eV/e | 1.6022e-14 V |
The Electronvolt per Elementary Charge (eV/e) is a unit of electric potential energy, representing the amount of energy gained by a single elementary charge (like an electron) when it is accelerated through an electric potential difference of one volt. This tool is essential for physicists, engineers, and students who are working with concepts in quantum mechanics, particle physics, and electrical engineering.
An electronvolt (eV) is defined as the amount of kinetic energy gained by an electron when it is accelerated through an electric potential difference of one volt. The elementary charge (e) is the charge of a single proton or the negative of the charge of a single electron, approximately equal to (1.602 \times 10^{-19}) coulombs.
The electronvolt is a standard unit of energy in the International System of Units (SI) but is often used in fields such as atomic and particle physics. The relationship between eV and other energy units, such as joules (J), is crucial for accurate calculations and conversions.
The concept of the electronvolt emerged in the early 20th century as scientists began to explore the properties of subatomic particles. As research in quantum mechanics and particle physics advanced, the electronvolt became a fundamental unit for measuring energy at microscopic scales, facilitating a deeper understanding of atomic interactions and energy levels.
To illustrate the use of the electronvolt per elementary charge, consider an electron that is accelerated through a potential difference of 5 volts. The energy gained by the electron can be calculated as follows:
[ \text{Energy (in eV)} = \text{Voltage (in V)} \times \text{Charge (in e)} ] [ \text{Energy} = 5 , \text{V} \times 1 , \text{e} = 5 , \text{eV} ]
The electronvolt is commonly used in various scientific fields, including:
To use the Electronvolt per Elementary Charge tool effectively:
1. What is the relationship between electronvolts and joules?
The relationship is given by (1 , \text{eV} = 1.602 \times 10^{-19} , \text{J}). This conversion is essential for translating energy values in different contexts.
2. How do I convert volts to electronvolts?
To convert volts to electronvolts, multiply the voltage by the elementary charge (1 e). For example, 10 volts equals 10 eV.
3. Why is the electronvolt important in physics?
The electronvolt is crucial for quantifying energy at the atomic and subatomic levels, making it a standard unit in fields like particle physics and quantum mechanics.
4. Can I use this tool for other types of charges?
This tool is specifically designed for elementary charges. For other charge types, adjustments may be necessary based on the charge's magnitude.
5. Is there a limit to the voltage I can input?
While there is no strict limit, extremely high voltages may not be practical for most applications. Always consider the context of your calculations.
For more information and to access the tool, visit Inayam's Electronvolt per Elementary Charge Converter. This tool is designed to enhance your understanding and application of electric potential in various scientific fields.
The volt (V) is the standard unit of electric potential, electric potential difference, and electromotive force in the International System of Units (SI). It is defined as the potential difference that would move one coulomb of electric charge through one joule of energy. In simpler terms, the volt quantifies how much energy is available to push electric charges through a circuit.
The volt is a derived unit in the SI system, named after the Italian physicist Alessandro Volta, who is credited with the invention of the first chemical battery. The unit is standardized based on the relationship between current (in amperes), resistance (in ohms), and power (in watts). The formula that connects these units is given by Ohm's Law: [ V = I \times R ] where ( V ) is voltage in volts, ( I ) is current in amperes, and ( R ) is resistance in ohms.
The concept of electric potential has evolved significantly since the 18th century. Alessandro Volta's invention of the voltaic pile in 1800 marked a pivotal moment in the study of electricity, leading to the formal definition of the volt. Over the years, as electrical engineering and technology advanced, the volt became a fundamental unit for measuring electric potential in various applications, from household appliances to complex industrial machinery.
To illustrate how to use the volt in calculations, consider a simple circuit where a current of 2 amperes flows through a resistor of 5 ohms. Using Ohm's Law: [ V = I \times R = 2 , \text{A} \times 5 , \Omega = 10 , \text{V} ] This means the voltage across the resistor is 10 volts.
The volt is widely used in various fields, including electrical engineering, physics, and electronics. It is essential for understanding how electrical systems operate, whether in designing circuits, troubleshooting electrical devices, or measuring electrical energy consumption.
To effectively use the Volt Unit Converter tool, follow these steps:
1. What is the definition of a volt?
The volt is the SI unit of electric potential, defined as the potential difference that moves one coulomb of charge through one joule of energy.
2. How do I convert volts to other units of electric potential?
You can use the Volt Unit Converter tool on our website to convert volts to other units such as millivolts, kilovolts, and more.
3. What is the relationship between volts, amperes, and ohms?
According to Ohm's Law, the voltage (in volts) is equal to the current (in amperes) multiplied by the resistance (in ohms): ( V = I \times R ).
4. Why is understanding volts important in electrical engineering?
Understanding volts is crucial for designing and analyzing electrical circuits, ensuring safety, and optimizing performance in electrical systems.
5. Can I use the Volt Unit Converter for educational purposes?
Absolutely! The Volt Unit Converter is a valuable tool for students and educators to understand electric potential and perform relevant calculations in physics and engineering.
By utilizing the Volt Unit Converter effectively, you can enhance your comprehension of electric potential and improve your skills in electrical calculations. For more conversions, visit our unit converter page.